

UEFI is not your enemy

Leif Lindholm

Debian Miniconf-UK 2013

●Background

What is UEFI

What is good about it?

What is bad about it?

Final bits

Overview

UEFI has managed to acquire a bit of a bad reputation in the open
source/free software community. This presentation aims to:

● set the record straight about what problems exist out there in the
UEFI ecosystem

● how they relate to the basic UEFI standard and to the codebase
● (and hopefully dispell some misunderstandings)

I have in the past year heard several things which would in the past
just have been shrugged off as BIOS bugs now referred to as
"UEFI secure boot bollox" on a slippery slope to ensure you will not
be able to run Linux on your hardware.

In order for the rest of the presentation to be of any value, I need to
start by attempting to explain how UEFI is not the evil plot by the
industry to enforce device lockdown.

And even if you have already made your mind up that the very
concept of binary signing is evil because it is possible to use it for
device lockdown, this presentation will hopefully help clarify which
bits you should focus on opposing.

First, in order of decreasing level of nefariousness, I will go through
four levels of distinct concepts which all to some extent form part of
what people tend to bundle together under the banner "UEFI
Secure Boot" (or sloppily, just "secure boot", or even just “UEFI”):

● Microsoft logo requirements for Windows 8
● UEFI Secure Boot
● UEFI
● Shim

Microsoft logo requirements

As part of the launch of Windows 8, Microsoft wrote down some rules about
how the firmware on _any_ devices that ship with Windows preinstalled must
operate. Part of this was that it must be able to cryptographically verify the
signature of any images it loads, using the UEFI Secure Boot protocol.

For x86 devices, this document explicitly states that this signature checking
mechanism must be possible to disable. For ARM devices, this document
explicitly states that this signature checking mechanism must NOT be
possible to disable.

This annoys me to no end, but from Microsoft's point of view, it's Windows
vs. Windows RT - and RT devices will only ever run the OS shipped with it
(yeah, right!).

Logo requirements #2

The entirely obvious problems with this are exacerbated by the
facts that:

● the implementation details (and shortcomings of the UEFI
specification prior to 2.4) mandates only one key can be
registered, meaning all OS installers must use the same key.

● Microsoft, for all intents and purposes, are their own CA for
Windows installers. Hence anyone who wants to install software
on anything shipped with Secure Boot enabled must have their
installer signed by the same CA.

UEFI Secure Boot

UEFI Secure Boot is a standard for supporting, and enforcing, the
cryptographic verification of loaded images before they can be executed. That
is all.

It depends entirely on hardware, software that comes before it, and software
that comes after it to actually achieve something that with a straight face could
be called secure boot. So just as if you have a color blind (or obnoxious) friend
with a cute red pet lizard called Green, just remember that in the context of the
UEFI environment, Secure Boot is a name, not a description.

I am not actually going to dwell much on the use of UEFI Secure Boot in the
rest of the presentation. That is not why we are here. (And Sledge has a
presentation on that after this.)

UEFI

UEFI does not mandate the use of Secure Boot. Nor does it
mandate that when Secure Boot exists, there should be
anything restricting the device owner from disabling it.

Hating UEFI because it is possible to mandate that it must only
run signed images makes about as much sense as hating Linux
because you can run software that uses DRM (Spotify, flash) on
it.

Shim
Shim is a UEFI application that also installs a UEFI protocol for use by
other applications. It was written by Matthew Garret, in order to make it
possible to load binaries _not_ signed by the primary firmware key.

A utility that just sidestepped the chain-of-trust checking would be unlikely
to be signed by any serious CA, so what Shim does is simply providing a
second level of authentication; a key database that can be kept in addition
to the primary firmware key, and let the operator securely add/remove keys
(given proper hardware implementation).

Used by commercial distro vendors in conjunction with GRUB and an
out-of-tree patch providing support for using the shim protocol for loading
kernel/initrd on x86.

Background

● What is UEFI

What is good about it?

What is bad about it?

Final bits

What is UEFI?

UEFI is something almost unique in the history of mankind; it is
a specification for a firmware architecture, which has gained
critical mass in the (commercial) community and is already the
defacto standard for x86 machines. Moreover, UEFI is only the
specification - not the implementation.

The origin is EFI, the Extensible Firmware Interface developed
by Intel for the IA64 architecture. Version 1.10 was handed over
to the UEFI Forum as the starting point of the UEFI
specification.

Why was it needed?

It replaces BIOS: a horrible, outdated piece of crud, tied to an
architecture that has not really existed for decades. A "secret
sauce" piece of software reverse-engineered out of the original
IBM PC and then bolted onto for as long as was possible,
before it simply could no longer be extended to support more
RAM, larger hard drives or fundamental changes to system
boot architecture. An entirely closed world run by a very small
group of companies.

UEFI is all nice and shiny!

Well, no.

But at least its overall architecture is 20+ years more modern
than BIOS. It was initially developed by Intel for IA64, and it is
actually one of the cleanest and most useful firmware
infrastructures I have come across.

TianoCore + edk2

On releasing the specification, Intel also released the overall
framework (but not the platform support code) into an open
source project called TianoCore. TianoCore does its overall
development in the edk2 (EFI Development Kit) tree.

It is an active project, contributed to by both hardware, BIOS
and software vendors. But the “UEFI BIOS” in modern PCs is
augmented with additional bits and bobs provided by the BIOS
vendors.

Background

What is UEFI

● What is good about it?

What is bad about it?

Final bits

In general

It provides a standardised execution environment, into which
any boot loader or boot time configuration utility can be
installed.

This execution environment provides things like direct block
access support, direct Ethernet support, console support - all
portable across any implementation (in theory – and
impressively often in practise).

Filesystem support

● It has explicit support for GUID Partition Table (death to MBR!).

● While it mandates VFAT, Microsoft have released their VFAT
driver with explicit patent grants and stuff for uses in UEFI
firmware.

● Support for additional filesystems can be added by loading
drivers.

Extensible (the 'E')

Supports running applications and loading drivers and
protocols.

Expansion cards can have drivers installed into the EFI system
partition and loaded automatically on boot.

Versioned APIs.

Even supports architecture independent applications/drivers
via EBC (EFI Byte Code).

Runtime Services

While somewhat horriffic from a system design point of view (my
description is that it is somewhat like bits of UEFI hanging around post
boot to act as a shared library for the kernel), it provides an
unparallelled level of integration between operating system and
firmware.

Lets the operating system set environment variables, including boot
images and priority order of those – in Linux using efibootmgr, which
simply operates on /sys files.

“Capsules” provides a standardised interface from within the operating
system to do things like scheduling a firmware update on next reboot.

Standardised interface for system reboot/poweroff.

Secure Boot

No, seriously.

Where the device owner is in control of this
mechanism (and the adjacent hardware and
software are doing the right thing), this can be a
quite useful security feature.

It has a written specification

This may not seem to be very much, but it is
huge.

It has a written specification

It has a conformance test suite

This may not seem to be very much, but it is
huge.

Critical mass

Known to work over at least 4 different
architectures.

Handy if you want to slot seamlessly into the
existing <whatever is cool this week>scale
server exosystem.

Background

What is UEFI

What is good about it?

● What is bad about it?

Final bits

Source code

Well, UEFI does not exactly come entirely without legacy:

● drivers and executables are PE/COFF format (!)

● APISpecificationSyntaxIsUngodlyNeverendingCamelCase().

– And coding style is Windows^M
● Repository is svn, but there are official git mirrors.

– Of course, mixing git and svn has its own problems.
● UCS-2

● Test suite has historically only been available to licensees (and
they have only received it as a .zip file drop). But work now
underway to move it to a repository, and there are at least
discussions about opensourcing it.

//

// Define the maximum extended data size that is supported when a status code is reported.

//

#define MAX_EXTENDED_DATA_SIZE 0x200

EFI_STATUS_CODE_PROTOCOL *mReportStatusCodeLibStatusCodeProtocol = NULL;

EFI_EVENT mReportStatusCodeLibVirtualAddressChangeEvent;

EFI_EVENT mReportStatusCodeLibExitBootServicesEvent;

BOOLEAN mHaveExitedBootServices = FALSE;

/**

 Locate the report status code service.

 Retrieve ReportStatusCode() API of Report Status Code Protocol.

**/

VOID

InternalGetReportStatusCode (

 VOID

)

{

 EFI_STATUS Status;

 if (mReportStatusCodeLibStatusCodeProtocol != NULL) {

 return;

 }

 if (mHaveExitedBootServices) {

 return;

 //

 // Check gBS just in case ReportStatusCode is called before gBS is initialized.

 //

 if (gBS != NULL && gBS->LocateProtocol != NULL) {

 Status = gBS->LocateProtocol (&gEfiStatusCodeRuntimeProtocolGuid, NULL, (VOID**) &mReportStatusCodeLibStatusCodeProtocol);

 if (EFI_ERROR (Status)) {

 mReportStatusCodeLibStatusCodeProtocol = NULL;

 }

 }

}

Tianocore edk2

● Contains no* platform support
– BSD licensed, and partly due to this, partly due to

historic ecosystem, very low availability of device
drivers.

Background

What is UEFI

What is good about it?

What is bad about it?

● Final bits

Linaro

Linaro maintains a tree of edk2 with added
support for a few platforms.
– https://git.linaro.org/gitweb?p=arm/uefi/uefi.git

Member landing teams keep “their” platforms
from bitrotting.

We also do various bits of peripheral (ARM)
development – GRUB, Linux UEFI runtime
services support, kernel UEFI stub support, ACPI
support.

https://git.linaro.org/gitweb?p=arm/uefi/uefi.git

ACPI

As of a couple of weeks ago, the UEFI Forum is
now the owner of the ACPI specification.

The previous world was that for each Windows
release, the ACPI group would get together and
discuss, release a new spec, and then go into
hiatus until the next time.

Resources

● Build/run UEFI for Aarch64
– http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=ArmPlatformPkg/AArch64

– (search for 'sourceforge aarch64 uefi')

● UEFI Forum

– http://www.uefi.org/
– Whitepaper: UEFI Secure Boot in Modern

Computer Security Solutions

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=ArmPlatformPkg/AArch64
http://www.uefi.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

